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Abstract
We have recently solved the inverse scattering problem for one-parameter
families of vector fields, and used this result to construct the formal solution
of the Cauchy problem for a class of integrable nonlinear partial differential
equations connected with the commutation of multidimensional vector fields,
such as the heavenly equation of Plebanski, the dispersionless Kadomtsev–
Petviashvili (dKP) equation and the two-dimensional dispersionless Toda
(2ddT) equation, as well as with the commutation of one-dimensional vector
fields, such as the Pavlov equation. We also showed that the associated
Riemann–Hilbert inverse problems are powerful tools to establish if the
solutions of the Cauchy problem break at finite time, to construct their long-
time behaviour and characterize classes of implicit solutions. In this paper,
using the above theory, we concentrate on the heavenly and Pavlov equations,
(i) establishing that their localized solutions evolve without breaking, unlike
the cases of dKP and 2ddT; (ii) constructing the long-time behaviour of the
solutions of their Cauchy problems; (iii) characterizing a distinguished class of
implicit solutions of the heavenly equation.

PACS number: 02.30.Jr

1. Introduction

It was observed long ago [1] that the commutation of multidimensional vector fields can
generate integrable nonlinear partial differential equations (PDEs) in arbitrary dimensions.
Some of these equations are dispersionless (or quasi-classical) limits of integrable PDEs,
having the dispersionless Kadomtsev–Petviashvili (dKP) equation [2, 3] as universal prototype
example; they arise in various problems of mathematical physics and are intensively studied
in the recent literature (see, for instance, [4–21]). In particular, an elegant integration scheme
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applicable, in general, to nonlinear PDEs associated with Hamiltonian vector fields, was
presented in [6] and a nonlinear ∂̄-dressing was developed in [12]. Special classes of nontrivial
solutions were also derived (see, for instance, [11, 14]).

Distinguished examples of PDEs arising as the commutation conditions [L̂1(λ), L̂2(λ)] =
0 of pairs of one-parameter families of vector fields, λ ∈ C being the spectral parameter, are
the following.

(1) The vector nonlinear PDE in N + 4 dimensions [22]

�Ut1z2 − �Ut2z1 +
( �Uz1 · ∇�x

) �Uz2 − ( �Uz2 · ∇�x
) �Uz1 = �0, (1)

where �U(t1, t2, z1, z2, �x) ∈ R
N, �x = (x1, . . . , xN) ∈ R

N and ∇�x = (∂x1 , . . . , ∂xN
),

associated with the following pair of (N + 1) dimensional vector fields:

L̂i = ∂ti + λ∂zi
+ �Uzi

· ∇�x, i = 1, 2. (2)

(2) Its dimensional reduction, for N = 2 [22]

�Utx − �Uzy + ( �Uy · ∇�x) �Ux − ( �Ux · ∇�x) �Uy = �0,

�U ∈ R
2, �x = (x, y), ∇�x = (∂x, ∂y),

(3)

obtained by renaming the independent variables as follows: t1 = z, t2 = t, x1 = x, x2 =
y, associated with the two-dimensional vector fields

L̂1 = ∂z + λ∂x + �Ux · ∇�x, L̂2 = ∂t + λ∂y + �Uy · ∇�x. (4)

(3) The divergenceless reduction ∇�x · �U = 0 of (3), the celebrated second heavenly equation
of Plebanski [23]

θtx − θzy + θxxθyy − θ2
xy = 0, θ = θ(x, y, z, t) ∈ R, x, y, z, t ∈ R, (5)

describing self-dual vacuum solutions of the Einstein equations, associated with the
following pair of Hamiltonian two-dimensional vector fields:

L̂1 ≡ ∂z + λ∂x + θxy∂x − θxx∂y, L̂2 ≡ ∂t + λ∂y + θyy∂x − θxy∂y. (6)

(4) The following system of two nonlinear PDEs in 2 + 1 dimensions [24]:

uxt + uyy + (uux)x + vxuxy − vyuxx = 0,

vxt + vyy + uvxx + vxvxy − vyvxx = 0,
(7)

arising from the commutation of the two-dimensional vector fields [24]

L̃1 ≡ ∂y + (λ + vx)∂x − ux∂λ,

L̃2 ≡ ∂t + (λ2 + λvx + u − vy)∂x + (−λux + uy)∂λ,
(8)

and describing a general integrable Einstein–Weyl metric [25].
(5) The v = 0 reduction of (7), the celebrated dKP equation

(ut + uux)x + uyy = 0, u = u(x, y, t) ∈ R, x, y, t ∈ R, (9)

(the x-dispersionless limit of the celebrated Kadomtsev–Petviashvili equation [26]),
associated with the following pair of Hamiltonian two-dimensional vector fields [5, 6]:

L̂1 ≡ ∂y + λ∂x − ux∂λ, L̂2 ≡ ∂t + (λ2 + u)∂x + (−λux + uy)∂λ, (10)

describing the evolution of small amplitude, nearly one-dimensional waves in shallow
water [27] near the shore (when the x-dispersion can be neglected), as well as unsteady
motion in transonic flow [2] and nonlinear acoustics of confined beams [3].
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(6) The u = 0 reduction of (7), the Pavlov equation [15]

vxt + vyy = vyvxx − vxvxy, v = v(x, y, t) ∈ R, x, y, t ∈ R, (11)

associated with the non-Hamiltonian one-dimensional vector fields [16]

L̂1 ≡ ∂y + (λ + vx)∂x, L̂2 ≡ ∂t + (λ2 + λvx − vy)∂x. (12)

(7) The two-dimensional dispersionless Toda (2ddT) equation [28, 29]

φζ1ζ2 = (eφt )t , φ = φ(ζ1, ζ2, t) (13)

(or ϕζ1ζ2 = (eϕ)tt , ϕ = φt ), associated with the pair of Hamiltonian vector fields [7]

L̂1 = ∂ζ1 + λe
φt
2 ∂t +

(
−λ

(
e

φt
2
)
t

+
φζ1t

2

)
λ∂λ,

L̂2 = ∂ζ2 + λ−1e
φt
2 ∂t +

(
λ−1

(
e

φt
2
)
t
− φζ2t

2

)
λ∂λ,

(14)

describing integrable heavens [30, 31] and Einstein–Weyl geometries [32–34]; whose
string equations solutions [8] are relevant in the ideal Hele–Shaw problem [35–39].

The inverse spectral transform (IST) for one-parameter families of multidimensional
vector fields, developed in [22] (see also [40]), has allowed one to construct the formal
solution of the Cauchy problem for the nonlinear PDEs (3) and (5) in [22], for equations (7)
and (9) in [24], for equation (11) in [41] and for the wave form (eφt )t = φxx + φyy of
equation (13) in [42]. This IST, introducing interesting novelties with respect to the classical
IST for soliton equations [27, 43], turns out to be, together with its associated nonlinear
Riemann–Hilbert (RH) dressing, an efficient tool to study several properties of the solution
space of the PDE under consideration: (i) the characterization of a distinguished class
of spectral data for which the associated nonlinear RH problem is linearized and solved,
corresponding to a class of implicit solutions of the PDE (for the dKP and 2ddT equations
respectively in [45] and in [42], and for the Dunajski generalization [16] of the heavenly
equation in [44]); (ii) the construction of the long-time behaviour of the solutions of the
Cauchy problem (for the dKP and 2ddT equations respectively in [45] and [42]); (iii) the
possibility of establishing whether or not the lack of dispersive terms in the nonlinear PDE
causes the breaking of localized initial profiles (for the dKP and 2ddT equations respectively
in [45] and in [42]) and, if yes, to investigate in a surprisingly explicit way the analytic aspects
of such a wave breaking, as was done for the dKP equation in [45].

In this paper we first develop, in section 2, the RH dressing schemes for equations (5) and
(11). Then we use these two schemes

(i) To show that, in contrast to the cases of the dKP and 2ddT equations, localized solutions
of the PDEs (5) and (11) do not break (in section 2);

(ii) To construct the long-time behaviour of the solutions of their Cauchy problems (in
section 3);

(iii) To characterize a distinguished class of spectral data for which the nonlinear RH problem
of equation (5) is linearized and solved, corresponding to a distinguished class of implicit
solutions of (5) (in section 4).

3



J. Phys. A: Math. Theor. 42 (2009) 404013 S V Manakov and P M Santini

2. Riemann–Hilbert dressing

In this section we present the RH dressing schemes for equations (5) and (11), and show that
localized solutions of these two models do not break. Both schemes can be extracted from
the inverse spectral transforms presented in [22] and in [41]. In solving the Cauchy problems
for equations (5) and (11), the RH data of these dressing schemes are connected to the initial
conditions via the direct spectral transforms presented in [22] and in [41].

(1) RH dressing for (5). Consider the vector nonlinear RH problem on the real line:

�π+(λ) = �π−(λ) + �R(�π−(λ), λ), λ ∈ R, (15)

where �π+(λ), �π−(λ) ∈ C
2 are two-dimensional vector functions analytic in the upper and

lower halves of the complex λ plane, normalized as follows:

�π±(λ) = �ν(λ; x, y, z, t) + O(λ−1), |λ| � 1,

�ν(λ; x, y, z, t) =
(

x − λz

y − λt

)
,

(16)

and the spectral data �R(�ζ , λ) = (R1(ζ1, ζ2, λ), R2(ζ1, ζ2, λ)) ∈ C
2, defined for �ζ ∈ C

2, λ ∈ R,
satisfy the following properties:

�R( �R(�̄ζ , λ), λ) = �ζ , ∀�ζ ∈ C
2, reality constraint, (17a)

{R1,R2}�ζ = 1, heavenly constraint, (17b)

where �R(�ζ , λ) := �ζ + �R(�ζ , λ) and {·, ·}�ζ is the usual Poisson bracket with respect to the

variables �ζ = (ζ1, ζ2). Then, assuming uniqueness of the solution of such a RH problem and
of its linearized version, it follows that �π± are solutions of the linear problems L̂1,2 �π± = �0,
where L̂1,2 are defined in (6), and(

θy

−θx

)
= �F(x, y, z, t) ∈ R

2 (18)

is the solution of the heavenly equation (5), where

�F(x, y, z, t) =
∫

R

dλ

2π i
�R(π−

1 (λ; x, y, z, t), π−
2 (λ; x, y, z, t), λ). (19)

As a consequence of equations L̂1,2 �π± = �0, it follows that, for |λ| � 1

π±
1 = x − λz − θyλ

−1 + θtλ
−2 + O(λ−3),

π±
2 = y − λt + θxλ

−1 − θzλ
−2 + O(λ−3).

(20)

Proof. We apply the operators L̂1,2 in (4) to the RH problem (15), where

�U = − lim
λ→∞

λ

(
�π± −

(
x − λz

y − λt

))
, (21)

obtaining the vector equation L̂j �π+ = J (�π−, λ)L̂j �π−, j = 1, 2, where J is the Jacobian
matrix of the transformation (15): Jkl(�ζ , λ) = ∂Rk(�ζ , λ)/∂ζl . Since, due to (21), L̂j �π± → 0
as λ → ∞, by uniqueness we infer that �π± are eigenfunctions of the vector fields L̂j :
L̂j �π± = �0. Consequently, �U is a solution of equation (3). In addition, if the reality constraint
(17a) is imposed, then, by uniqueness, it follows, from (15), that �π+ = �π−, implying the
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reality of �U . Finally, if the heavenly constraint (17b) is imposed, then
{
π+

1 , π+
2

} = {
π−

1 , π−
2

}
.

Since
{
π±

1 , π±
2

} → 1 as |λ| → ∞, the analyticity of the eigenfunctions implies that{
π+

1 , π+
2

} = {
π−

1 , π−
2

} = 1. Applying L̂1,2 to these two equations, one infers that ∇�x · �U = 0,
implying the existence of a potential θ such that �U = (θy,−θx), and implying also that the
two vector fields L̂1,2 are Hamiltonian, with Hamiltonians (H1,H2) = ∇�xθ , reducing to the
vector fields (6). Then system (3) reduces to the heavenly equation (5) and equation (18)
follows from (21) and from the integral equations characterizing the RH problem. �

(2) RH dressing for (11). Consider the scalar nonlinear RH problem on the real line

π+(λ) = π−(λ) + R(π−(λ), λ), λ ∈ R, (22)

where π+(λ), π−(λ) ∈ C are scalar functions analytic in the upper and lower halves of the
complex λ plane, normalized as follows:

π±(λ; x, y, t) = ν(λ; x, y, t) + O(λ−1), |λ| � 1,

ν(λ; x, y, t) = −λ2t − λy + x,
(23)

and the spectral datum R(ζ, λ) ∈ C satisfies the following reality constraint:

R(R(ζ̄ , λ), λ) = ζ, ∀ζ ∈ C, λ ∈ R, (24)

where R(ζ, λ) := ζ + R(ζ, λ). Then, assuming uniqueness of the solution of such a RH
problem and of its linearized version, it follows that π± are solutions of the linear problems
L̂1,2π

± = 0, where L̂1,2 are defined in (12), and

v = F (x, y, t) ∈ R (25)

is a solution of equation (11), where

F (x, y, t) =
∫

R

dλ

2π i
R(π−(λ; x, y, t), λ). (26)

Proof. We apply the operators L̂1,2 in (12) to the RH problem (22), where

v(x, y, t) = − lim
λ→∞

λ(π± + λ2t + λy − x), (27)

obtaining L̂jπ
+ = J (π−, λ)L̂jπ

−, j = 1, 2, where J (ζ, λ) = ∂R(ζ, λ)/∂ζ . Since
L̂1π

± → 0 as λ → ∞, it follows that, by uniqueness, π± are eigenfunctions of L̂1: L̂1π
± = 0.

Consequently, we have the asymptotics

π± = −λ2t − λy + x − v

λ
+

β

λ2
+ O(λ−3), |λ| � 1.

βx = vy + v2
x,

(28)

implying that also L̂2π
± → 0 as λ → ∞. Therefore, again by uniqueness, L̂1,2π

± = 0, v

satisfies equation (11), and equation (25) follows from (27) and from the integral equations
characterizing the RH problem. If, in addition, the reality constraint (24) is imposed, then, by
uniqueness, π+ = π− and, consequently, v ∈ R. �

We recall that, in the dressing schemes for the dKP and 2ddT equations, the spectral
mechanism responsible for breaking is the presence, in the normalizations of the solutions of
their RH problems, of the unknown fields, so that the inverse formulae define the solutions
of the PDEs only implicitly [42, 45]. Since the normalizations (16), (23) depend only on the
spacetime independent variables, such a breaking mechanism is absent here, and we expect
that localized solutions of (5) and (11) do not break during their evolution.
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3. Long-time behaviour of the solutions

The IST provides an effective tool to construct the long-time behaviour of the solutions of
integrable PDEs. In this section we investigate the long-time behaviour of the solutions of the
nonlinear RH problems (15), (22), and, consequently, of the solutions of the Cauchy problems
for equations (5) and (11).

Asymptotics of equation (5). We study the long-time t � 1 regime in the space regions

x = x̃ + v1t, y = v2t, z = v3t, x̃, v1, v2, v3 = O(1), v2, v3 
= 0, t � 1. (29)

The system of nonlinear integral equations characterizing the solutions of the RH problem
(15) is conveniently written in the form

φj (λ) = 1

2π i

∫
R

dλ′

λ′ − (λ − i0)
Rj (x̃ + (v1 − λ′v3)t + φ1(λ

′), (v2 − λ′)t + φ2(λ
′), λ′),

j = 1, 2, (30)

where

φ1(λ) = π−
1 (λ) − (x − λz), φ2(λ) = π−

2 (λ) − (y − λt). (31)

The fast decay, in t, of φj , j = 1, 2, due to the two different linear growths in t of the first two
arguments of R1, R2, is partially contrasted if v1 = v2v3; i.e., on the saddle surface

x = x̃ +
yz

t
(v1 = v2v3). (32)

Indeed, on such a two-dimensional manifold, the first two arguments of R1, R2 in (30) exhibit
the same linear growth in t

φj (λ) = 1

2π i

∫
R

dλ′

λ′ − (λ − i0)
Rj (x̃ + v3(v2 − λ′)t + φ1(λ

′), (v2 − λ′)t + φ2(λ
′), λ′),

j = 1, 2. (33)

Since, in this case, the main contribution to the integral occurs when λ′ ∼ v2, we make the
change of variable λ′ = v2 + μ′/t , obtaining

φj (λ) ∼ 1

2π it

∫
R

dμ′

μ′/t − (λ − v2 − i0)
Rj

(
x̃ − v3μ

′ + φ1

(
v2 +

μ′

t

)
,

−μ′ + φ2

(
v2 +

μ′

t

)
, v2

)
, j = 1, 2. (34)

If |λ − v2| � t−1, equation (34) implies that φj (λ) = O(t−1), j = 1, 2

φj (λ) ∼ − 1

2π i(λ − (v2 + i0))t

∫
R

dμ′Rj

(
x̃ − v3μ

′ + φ1

(
v2 +

μ′

t

)
,

−μ′ + φ2

(
v2 +

μ′

t

)
, v2

)
, j = 1, 2, (35)

while, for λ − v2 = μ/t, μ = O(1), we have that φj (λ) = O(1), j = 1, 2

φj

(
v2 +

μ

t

)
∼ 1

2π i

∫
R

dμ′

μ′ − (μ − i0)
Rj

(
x̃ − v3μ

′ + φ1

(
v2 +

μ′

t

)
,

−μ′ + φ2

(
v2 +

μ′

t

)
, v2

)
, j = 1, 2. (36)

6
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Therefore it is not possible to neglect, in the integral equations (34), φ1,2 in the arguments of
R1,2 and these integral equations remain nonlinear also in the long-time regime. Summarizing,
due to equations (36), (34), (18) and (19), the long-time behaviour of the solutions of the
Cauchy problem for the heavenly equation on the saddle (32) reads(−θy

θx

)
= 1

t
�F∞

(
x − yz

t
,
y

t
,
z

t

)
+ o(t−1), x − yz

t
= O(1), t � 1, (37)

where

�F∞(x̃, v2, v3) = − 1

2π i

∫
R

dμ �R(x̃ − v3μ + a1(μ; x̃, v2, v3),−μ + a2(μ; x̃, v2, v3), v2). (38)

and aj (μ; x̃, v2, v3), j = 1, 2 are the solutions of the following nonlinear integral equations:

aj (μ) = 1

2π i

∫
R

dμ′

μ′ − (μ − i0)
Rj (x̃ − v3μ

′ + a1(μ
′),−μ′ + a2(μ

′), v2), j = 1, 2.

(39)

Outside the saddle, the solution decays faster than 1/t .
We remark that the long-time behaviour (37) is formally the same as that of solutions of

the linearized heavenly equation θtx − θzy = 0; the nonlinearity manifests only in the fact
that �F∞ is obtained, from the scattering data, through the solution of the nonlinear integral
equations (39). These equations characterize the new RH problem

�A+(μ) = �A−(μ) + �R( �A−(μ), v2), μ ∈ R, (40)

where �A±(μ; x̃, v2, v3) ∈ C
2 are two-dimensional vector functions analytic in the upper and

lower halves of the complex μ plane, normalized as follows:

�A±(μ) =
(

x̃ − v3μ

−μ

)
+ O(μ−1), (41)

�R(�ζ , λ) are the heavenly spectral data and �a(μ; x̃, v2, v3) ≡ �A−(μ; x̃, v2, v3) − (x̃ −
v3μ, −μ)T .

The above analysis extends, with minor modifications, to equation (11), for which we
give just the results.

Asymptotics of equation (11). Let t � 1 and

x = x̃ + v1t, y = v2t, x̃, v1, v2 = O(1), v2 
= 0, t � 1. (42)

On the parabola

x = x̃ − y2

4t

(
v1 = −v2

2

4

)
, (43)

the analogue of the heavenly saddle (32), the long-time behaviour of the solutions of
equation (11) is given by

v = 1√
t
F∞

(
x +

y2

4t
,
y

t

)
+ o

(
1√
t

)
, (44)

where

F∞(x̃, v2) = 1

2π i

∫
R

dμR

(
x̃ − μ2 + a(μ; x̃, v2),−v2

2

)
, (45)

7
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R(ζ, λ) is the spectral datum of equation (11), and a(μ; x̃, v2) is the unique solution of the
nonlinear integral equation

a(μ) = 1

2π i

∫
R

dμ′

μ′ − (μ − i0)
R

(
x̃ + μ′2 + a(μ′),

v2

2

)
, (46)

characterizing the solution of the following scalar nonlinear Riemann problem on the real axis:

A+(μ) = A−(μ) + R

(
A−(μ),−v2

2

)
, μ ∈ R,

A±
(

μ; x̃,
v2

2

)
= x̃ − μ2 + O(μ−1), |μ| � 1,

(47)

where a
(
μ; x̃, v2

2

) ≡ A−(μ) − (x̃ − μ2). Outside the parabola (43), the solution decays faster
than 1/

√
t .

4. Implicit solutions of the heavenly equation

In this section we construct a class of explicit solutions of the vector nonlinear RH problem
(15)–(17) and, correspondingly, a class of implicit solutions of the heavenly equation (5),
parametrized by an arbitrary real function of two variables.

Suppose that the RH data in (15) are given by

Rj(ζ1, ζ2, λ) = ζj

(
ei(−)j+1f (ζ1ζ2,λ) − 1

)
, j = 1, 2, (48)

in terms of the new real spectral function f (ζ, λ) depending on π−
1 and π−

2 only through their
product. Then the RH problem (15) becomes

π+
1 = π−

1 eif (π−
1 π−

2 ,λ), λ ∈ R,

π+
2 = π−

2 e−if (π−
1 π−

2 ,λ)
(49)

and the following properties hold.

(1) The reality and the heavenly constraints (17) are satisfied.
(2) π+

1 π+
2 = π−

1 π−
2 . Consequently, (π+

1 π+
2 ) is just a polynomial in λ

π+
1 π+

2 = π−
1 π−

2 = ztλ2 − (xt + yz)λ + xy − zθx + tθy ≡ w(λ), (50)

and the vector nonlinear RH problem (15) decouples into two linear scalar RH problems

π+
1 = π−

1 eif (w(λ),λ), π+
2 = π−

2 e−if (w(λ),λ). (51)

(3) Since, from (51),

π+
j ei(−)j f +(λ) = π−

j ei(−)j f −(λ), j = 1, 2, (52)

where

f ±(λ) = 1

2π i

∫
R

dλ′

λ′ − (λ ± i0)
f (w(λ′), λ′), (53)

also π+
j ei(−)j f +(λ), j = 1, 2 are polynomials in λ. We expand them in powers of λ, for

|λ| � 1, and introduce the notation

〈λnf 〉 = 1

2π

∫
R

λnf (w(λ), λ) dλ, n ∈ N. (54)

From the positive power expansions, it follows that:

π+
1 e−if +(λ) = π−

1 e−if −(λ) = x − zλ − z〈f 〉,
π+

2 eif +(λ) = π−
2 eif −(λ) = y − tλ + t〈f 〉,

(55)
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implying the following explicit solution of the RH problem (51):

π±
1 = (x − λz − z〈f 〉) eif ±(λ), π±

2 = (y − λt + t〈f 〉) e−if ±(λ). (56)

From the coefficients of the λ−1 terms, which must be zero, one finally obtains the two
conditions

θy = x〈f 〉 − z
(〈λf 〉 + 1

2 〈f 〉2
)
, θx = y〈f 〉 − t

(〈λf 〉 − 1
2 〈f 〉2

)
. (57)

Since 〈f 〉 and 〈λf 〉 depend, through w, on θx and θy (see (50)), it follows that (57) is
a system of algebraic equations defining implicitly the solution (θx, θy) of the heavenly
equation.

In addition, equating to zero the coefficients of the λ−2 terms (using (20)), one obtains

θt = θy〈f 〉 − x
(〈λf 〉 + 1

2 〈f 〉2
)

+ z
(〈λ2f 〉 + 〈f 〉〈λf 〉 + 1

6 〈f 〉3
)
,

θz = −θx〈f 〉 − y
(〈λf 〉 − 1

2 〈f 〉2
)

+ t
(〈λ2f 〉 − 〈f 〉〈λf 〉 + 1

6 〈f 〉3
)
,

(58)

and manipulating equations (58) and (57), one shows that the solutions of (5) generated by the
spectral data (48) satisfy the following linear PDE:

tθt − zθz + yθy − xθx = 0. (59)

Substituting in (5) the expression of θt given in (59), one obtains the lower dimensional
nonlinear constraint

(xθx)x − yθxy + zθxz − tθyz + t
(
θxxθyy − θ2

xy

) = 0 (60)

satisfied by the solutions of (5) generated by the spectral data (48).
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